AÇILAR
Başlangıç noktaları ortak iki ışının birleşimine açı denir.
şekilde [AC ve [AB ışınının oluşturduğu açı BAC açısıdır.
[ABÈ[AC = BAC açısıdır.BAC, CAB olarak veya A ile
gösterilir.[AB ve [AC ışınları açının kenarları,
Başlangıç noktaları ortak iki ışının birleşimine açı denir.
şekilde [AC ve [AB ışınının oluşturduğu açı BAC açısıdır.
[ABÈ[AC = BAC açısıdır.BAC, CAB olarak veya A ile
gösterilir.[AB ve [AC ışınları açının kenarları,
A noktası açının köşesidir.
Yöndeş açıların ölçüleri eşittir. m(a) = m(x) ; m(b) = m(y)
m(c) = m(z) ; m(d) = m(t)
b. İçters açılar
Açı yazılırken açının köşesi olan nokta ortada yazılır.
1. Açının Ölçüsü
[AB ile [AC arasındaki açıklığın ifadesine açının ölçüsü
denir. BAC açısının ölçüsü a dır.m(BAC) = a veya
m(A) = a olarak gösterilir.
1. Açının Ölçüsü
[AB ile [AC arasındaki açıklığın ifadesine açının ölçüsü
denir. BAC açısının ölçüsü a dır.m(BAC) = a veya
m(A) = a olarak gösterilir.
Ölçüleri eşit olan açılara eş açılar denir.
2. Açının Düzlemde Ayırdığı Bölgeler
Bir açı düzlemi üç bölgeye ayırır.
a. Açının kendisi
[AB ve [AC ışınları.
b. İç bölge (taralı alan)
c. Dış bölge
2. Açının Düzlemde Ayırdığı Bölgeler
Bir açı düzlemi üç bölgeye ayırır.
a. Açının kendisi
[AB ve [AC ışınları.
b. İç bölge (taralı alan)
c. Dış bölge
3. Açı ölçü birimleri
Açı ölçüsü birimi olarak genelde derece kullanılır. Dereceden başka Grad ve Radyan birimleri de kullanılır. Açı ölçüsü birimleri arasında,
360° =400 G (grad) = 2p (radyan) eşitliği vardır.
Bir ışının başlangıç noktası etrafında bir tur döndürülmesi ile elde edilen açı 360° dir.
Derecenin alt birimleri
1° =60' (dakika)
1' = 60" (saniye)
1° = 3600" dir.
90° = 89°59' 60" ve
180° = 179°59' 60" olur.
Açı ölçüsü birimi olarak genelde derece kullanılır. Dereceden başka Grad ve Radyan birimleri de kullanılır. Açı ölçüsü birimleri arasında,
360° =
Bir ışının başlangıç noktası etrafında bir tur döndürülmesi ile elde edilen açı 360° dir.
Derecenin alt birimleri
1° =
1' = 60" (saniye)
1° = 3600" dir.
90° = 89°
180° = 179°
4. Ölçülerine göre açılar
a. Ölçüsü 0° ile 90° arasında olan açılara dar açı denir.
a. Ölçüsü 0° ile 90° arasında olan açılara dar açı denir.
b. Ölçüsü 90° olanaçılara dik açı denir
c. Ölçüsü 90° ile 180° arasında olan açılara geniş açı denir.
d. Ölçüsü 180° olan açılara doğru açı denir.
e. Ölçüsü 360° olan açıya tam açı denir.
5. Komşu açılar
Köşeleri ve birer ışınları ortak olan, iç bölgesi ortak olmayan açılara komşu açılar denir.
CAD ile DAB komşu açılardır.
5. Komşu açılar
Köşeleri ve birer ışınları ortak olan, iç bölgesi ortak olmayan açılara komşu açılar denir.
CAD ile DAB komşu açılardır.
6. Açıortay
Açıyı iki eşit parçaya bölen ışına açıortay denir.
[AD, CAB açısının açıortayıdır.
Açıortay üzerinde alınan her noktanın açının kollarına olan dik uzaklıkları eşittir.
Açıyı iki eşit parçaya bölen ışına açıortay denir.
[AD, CAB açısının açıortayıdır.
Açıortay üzerinde alınan her noktanın açının kollarına olan dik uzaklıkları eşittir.
7. Tümler açı
Ölçüleri toplamı 90° olan iki açıya tümler açılar denir.
m(CAD)+m(DAB)=90°
a+b=90°
a açısının tümlerinin ölçüsü (90° – a) dır.
Ölçüleri toplamı 90° olan iki açıya tümler açılar denir.
m(CAD)+m(DAB)=90°
a+b=90°
a açısının tümlerinin ölçüsü (90° – a) dır.
Komşu tümler iki açının açıortay doğruları arasındaki açının ülçüsü 45° dir.
[OA] ^ [OB]
m(KOL) = 45°
8. Bütünler açı
m(KOL) = 45°
8. Bütünler açı
Ölçüleri toplamı 180° olan iki açıya bütünler açılar denir.
m(DAB)+m(CAD)=180°
x+y=180°
x açısının bütünlerinin ölçüsü (180° – x) dir.
Komşu bütünler iki açının açıortay doğruları arasındaki açının ölçüsü 90° dir.
m(DAB)+m(CAD)=180°
x+y=180°
x açısının bütünlerinin ölçüsü (180° – x) dir.
Komşu bütünler iki açının açıortay doğruları arasındaki açının ölçüsü 90° dir.
m(KOL) = 90°9. Ters Açılar
Kesişen iki doğrunun oluşturduğu açılardan komşu olmayanlara ters açılar denir.
Kesişen iki doğrunun oluşturduğu açılardan komşu olmayanlara ters açılar denir.
Ters açıların ölçüleri eşittir.
m(x)=m(z) ve
m(t)=m(y) dir.
m(x)=m(z) ve
m(t)=m(y) dir.
10. Paralel iki doğrunun bir kesenle yaptığı açılar
d1 // d2 ise
Yöndeş açıların ölçüleri eşittir. m(a) = m(x) ; m(b) = m(y)
m(c) = m(z) ; m(d) = m(t)
b. İçters açılar
d1 // d2 ise
a ile z ve b ile t içters açılarıdır. İçters açıların ölçüleri eşittir.m(a) = m(z); m(b) = m(t)
a ile z ve b ile t içters açılarıdır. İçters açıların ölçüleri eşittir.m(a) = m(z); m(b) = m(t)
Dışters açılar
d1 // d2 ise Dışters açıların ölçüleri eşittir.
m(c)=m(x)=m(d)=m(y)
m(c)=m(x)=m(d)=m(y)
d. Karşı durumlu açılar
d1 // d2 ise Karşı durumlu açıların toplamı 180° dır.m(a) + m(t) = 180°; m(b) + m(z) = 180°
Karşı durumlu açıların açıortayları arasındaki açının ölçüsü 90° dir.
Paralel doğrular arasında birden fazla kesenin olduğu durumlarda kesişim noktalarından yeni paraleller çizilir.
e. Birden fazla kesenli durumlar
d1 // d2 ise B noktasından d1 ve d2 doğrularına paralel çizersek m(ABC) = a + b olur.
e. Birden fazla kesenli durumlar
d1 // d2 ise B noktasından d1 ve d2 doğrularına paralel çizersek m(ABC) = a + b olur.
B noktasından paralel çizersek m(ABD) + x = 180°
m(DBC) + z = 180° buradan
x + y + z = 360° dir.
m(DBC) + z = 180° buradan
x + y + z = 360° dir.
f. Paralel doğrular arasındaki ardışık zıt yönlü açılar
d1 // d2 ise a + b + c = x + y olur.
Bu tür soruları kırılma noktalarından paraleller
çizerek de çözebiliriz.
d1 // d2 ise a + b + c = x + y olur.
Bu tür soruları kırılma noktalarından paraleller
çizerek de çözebiliriz.
g. Kolları paralel ve kolları dik açılar
Açıları oluşturan ışınlar aynı yönde ve paralel ise bu iki açının ölçüsü eşittir.
zıt yönlü ve paralel ise bu iki açının ölçüsü eşittir. Açıları oluşturan ışınlardan biri aynı diğeri zıt yönlü ve paralel ise bu iki açının ölçüleri toplamı;
a + b = 180° olur.
a + b = 180° olur.
Kenarları birbirine dik karşılıklı iki açının ölçüleri toplamı a + b = 180° olur.
Kenarları şekildeki gibi birbirine dik açıların ölçüleri eşittir.
Hiç yorum yok:
Yorum Gönder